PFAS and a contrally relevant crops and other lends

Identifying and Prioritizing Research and Programmatic Needs in the Detection, Mitigating, and Remediating PFAS in Agriculture and Food Systems September 10th 2024

United States Department Agriculture (USDA-ARS-PSR

Shaun Curtin

Reagents

Targeted mutagenesis Single genes Multiple genes QTLs Base edits Amino acid changes miRNA target disruption Targeted knock-in Prime edit

Transformation

Whole & hairy root txn Selectable markers Developmental regulators (DRs) Agrobacterium GAANTY Shooty-Agro Shooty-rooty-Agro

Legumes

Soybean

Gastrolobium spp.

Genotyping

Phenotyping

PFAS Background

- PFAS, a large group of chemicals known as per- and polyfluoroalkyl substances.
- Man-made compounds with wide-spread commercial use
- Highly stable carbon-fluorine (C-F) bond
- Environmental persistence, toxicity and bioaccumulation
- Remediation technologies to remove these chemicals

Common remediation technologies

Excavation/removal Physical/chemical treatment Thermal treatment Biological treatment Bioventing Biosparging Bioaugmentation Phytoremediation

The Elemental[™] **PFAS Destruction** system is a low energy, small footprint, proprietary photochemical process that perates at room temperature and atmospheric pressure. The process can be used in a batch or continuous mode with low/easy maintenance. The by-products of the process are free fluoride and CO₂. The system can be scaled up with low CapEx and energy cost and installed and managed on-site.

https://clarostechnologies.com/

Zhang et al 2022 Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review

Phyto-remediation technologies

<u>Phytoextraction</u> – accumulation of contaminant from at is removal by plant harvest

<u>Phytostabilization -</u> contaminants are retained in the soil

<u>Phytodegradation - organic</u> contaminants are converted to less harmful substances

<u>Phytovolatilization -</u> contaminants are converted to a gaseous state and released into the atmosphere

Greipsson, S. (2011) Phytoremediation. Nature Education Knowledge 3(10):7

Examples of phytoremediation

Repeated applications lead to P contaminated soil.

Eroded into waterways, damaging water quality

P is a finite mineral resource

The phenotype of 4x KO single *pho2-1* mutant plants

10x fold increase in P_i observed in the octuple mutant Two genes Pho2-B & Pho2-C, 4x haplotype copies. (Pho2-B1, Pho2-B2, Pho2-B3 & Pho2-B4)

Examples of commercially relevant componds

Gastrolobium spp. can accumulate extremely high levels of F⁻

Gastrolobium parvifolium aka 'Berry Poison"

Gastrolobium cuneatum aka 'River Poison'

Gastrolobium bilobum aka 'Heart Leaf Poison'

Gastrolobium laytonii aka 'Breelya' ' Kite-leaf Poision'

Hairy-root assay for generating transgenic roots

Use Agrobacterium hairy-root strains to rapidly test candidate dehalogenase and hydrolase activities

PARSCL279 PASS- P355 P355 COMPANDE TO THE PYSION AND

A. rhizogenes used for T-DNA delivery

Seeds are germinated, root is removed and inoculated with the Agrobacterium

Two weeks after transformation

Six weeks after transformation Ruby-red is expressed in transgenic root tissue.

Screening promoter & candidate enzymes in plants

- Identify promoters with strong root expression
- Identify candidate defluorination enzymes

Liu et al 2022 AtGCS promoter-driven clustered regularly interspaced short palindromic Nitz et al 2001 Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana Farajollahi et al 2024 ACS Omega 2024, 9, 28546–28555

Demonstrating and detecting defluorination

Bygd et al 2021 Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1

Questions to be answered

- Can *Gastrolobium* spp. be transformed by Agrobacterium?
- Commonly used PFOA (perfluorooctanoic acid) and PFOS (perfluorooctanoic sulfonic acid) or difluoracetate acid?
- How do we monitor the reaction, how do we know active defluorination is happening?

Acknowledgments

- Roy Scott
- Jack Okamuro
- Deb Samac
- Larry Wackett
- Thomas Niehaus

